A pointwise weak-majorization inequality for linear maps over Euclidean Jordan algebras

نویسندگان

چکیده

Given a linear map T on Euclidean Jordan algebra of rank n, we consider the set all nonnegative vectors q in Rn with decreasing components that satisfy pointwise weak-majorization inequality λ(|T(x)|)≺w⁡q∗λ(|x|), where λ is eigenvalue and ∗ denotes componentwise product Rn. With respect to ordering, show existence least vector this set. When positive map, shown be join (in order) T(e) T∗(e), e unit element algebra. These results are analogous Bapat [Majorization singular values. III. Linear Algebra Appl. 1991;145:59–70] We also extend two recent Tao et al. [Some log weak majorization inequalities algebras. 2020. arXiv:2003.12377v2] proved for quadratic representations Schur induced transformations. As an application, provide estimate norm general relative spectral norms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras

A positive map between Euclidean Jordan algebras is a (symmetric cone) order preserving linear map. We show that the norm of such a map is attained at the unit element, thus obtaining an analog of the operator/matrix theoretic Russo-Dye theorem. A doubly stochastic map between Euclidean Jordan algebras is a positive, unital, and trace preserving map. We relate such maps to Jordan algebra automo...

متن کامل

Sparse Recovery on Euclidean Jordan Algebras

We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

On the Uniform Nonsingularity Property for Linear Transformations on Euclidean Jordan Algebras

In a recent paper, Chua and Yi introduced the so-called uniform nonsingularity property for a nonlinear transformation on a Euclidean Jordan algebra and showed that it implies the global uniqueness property in the context of symmetric cone complementarity problems. In a related paper, Chua, Lin, and Yi raise the question of converse. In this paper, we show that, for linear transformations, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2021

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2020.1870096